Sustainable Cities and Society 67 (2021) 102747

i

Contents lists available at ScienceDirect

Sustainable Cities
and Society

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

Check for

Reducing energy consumption of Neural Architecture Search: An inference o
latency prediction framework
Longfei Lu, Bo Lyu”

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

ARTICLE INFO ABSTRACT

Keywords:

Deep learning

Latency prediction

Neural architecture search
Energy saving

Society and environment

Benefit from the success of NAS (Neural Architecture Search) in deep learning, humans are hopefully been
released from the tremendous labor of manual tuning of structure and hyper-parameters. However, the success
of NAS comes at the cost of much more computational resource consumption, thousands of times more
computational power than ordinary training of manual-designed models, especially for the resource-aware
multi-objective NAS, which must be serialized as a sequential loop of sampling, training, deployment, and
inference. Recent research has shown that deep learning leads to huge energy consumption and CO2 emission
(training of the namely Transformer can emit CO2 as much as five cars in their lifetimes Strubell et al. (2019)).
Aiming to alleviate this issue, we propose the end-to-end inference latency prediction framework to empower
the NAS process with a direct resource-aware efficiency indicator. Namely, we first propose the end-to-end
latency prediction framework, which can predict latency quickly and accurately based on the dataset collected
by ourselves. Eventually, we experimentally show that with the encoding scheme we designed, our proposed
best model, LSTM-GBDT Latency Predictor(LGLP) achieves an excellent result of 0.9349 MSE, 0.5249 MAE,
0.9842 R?, and 0.9925 corrcoef. In other words, our limited dataset and encoding scheme already provide the
precise knowledge representation of this large search space. By equipping NAS with the proposed framework,
taking NEMO for example, it will save 1588 kWh-PUE energy, 1515 pounds CO2 emissions, and $3176
cloud compute cost of AWS. For NAS is now widely exploited in research or industry applications, this will
bring incalculable benefits to society and the environment.

1. Introduction GhostNet (Han et al., 2020). But manually designing more efficient
architectures relies heavily on human experts’ experience, let alone
design the network under resource-constrained, e.g., the latency target
and memory-consumption limit.

Different from promoting the compact models by designing, some
compress-accelerate methods, e.g. network pruning (Han, Pool, Tran,
& Dally, 2015; He, Zhang, & Sun, 2017; Li, Kadav, Durdanovic, Samet,
& Graf, 2017; Lin, Rao, Lu, & Zhou, 2017; Liu et al., 2017), quan-
tization (Courbariaux, Bengio, & David, 2015; Courbariaux, Hubara,

The sustainable development of the environment and city is at-
tracting more and more attention from science and technology cir-
cles. Ignoring the influence of social environment and blindly pursu-
ing economy is not a long-term healthy development path (Owyer,
Pan, Charlesworth, Butler, & Shah, 2020; Su, 2020; Zahmatkesh &
Al-Turjman, 2020; Zhu et al., 2019).

Deep learning has recently reached significant success in various
application scenarios, including computer vision, natural language pro-

cessing, and big data analysis. However, the excellent performance is
followed by the ever-increasing computation-consumption and mem-
ory demand, thus making it problematic for deployment on resource-
constrained devices. The training of neural networks requires a huge
amount of power resources, which will be equivalent to a huge CO2
emission (Strubell, Ganesh, & McCallum, 2019). Recent years, there
has been a big emphasis on presenting the low-cost architectures,
e.g. the SqueezeNet (Iandola et al., 2017), MobileNet (Howard et al.,
2019, 2017; Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), Shuf-
fleNet (Zhang, Zhou, Lin, & Sun, 2018), Xception (Chollet, 2017),

Soudry, El-Yaniv, & Bengio, 2016; Li & Liu, 2016; Rastegari, Ordonez,
Redmon, & Farhadi, 2016; Zhou et al., 2016) and the knowledge
distillation approach (Hinton, Vinyals, & Dean, 2015) are also widely
employed to achieve compact models.

Since the significant success of NAS is first reported by Zoph and
Le (2017) and Zoph, Vasudevan, Shlens, and Le (2018), it has opened
up a path towards the trade-off between high efficiency and well
performance. Especially, the multi-objective NAS (Dong, Cheng, Juan,
Wei, & Sun, 2018; Hsu et al., 2018), and Pareto-NASH (Elsken, Metzen,

* Correspondence to: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chendu 611731, China.
E-mail addresses: longfeilu@std.uestc.edu.cn (L. Lu), blyucs@outlook.com (B. Lyu).

https://doi.org/10.1016/j.5cs.2021.102747

Received 29 December 2020; Received in revised form 20 January 2021; Accepted 24 January 2021

Available online 29 January 2021
2210-6707/© 2021 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/scs
http://www.elsevier.com/locate/scs
mailto:longfeilu@std.uestc.edu.cn
mailto:blyucs@outlook.com
https://doi.org/10.1016/j.scs.2021.102747
https://doi.org/10.1016/j.scs.2021.102747
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2021.102747&domain=pdf

L. Lu and B. Lyu

& Hutter, 2018) optimize the multiple objectives that comprehen-
sively involve the precision, parameters, and FLOPs during the search
procedure. This literature experimentally achieves the Pareto-optimal
solutions and facilitates the feasibility of deploying models.

Although the Parameters and FLOPs are widely exploited and easily
obtained evaluation indicators, some literature has reported that the
number of Parameters and FLOPs cannot directly reflect the latency,
especially considering the difference of running platform. For example,
MobileNet (Howard et al., 2017) and NASNet (Zoph et al., 2018) have
similar FLOPs (575M vs. 564M), but their latencies are significantly
different (113 ms vs. 183 ms) (Tan et al.,, 2019). To address these
issues, MnasNet (Tan et al., 2019) proposed the platform-aware neural
architecture search that directly employed the real-world inference
latency to the reinforcement learning objective.

It is obvious that online latency measurement is a cost-prohibitive
way to be spread out, there are two primary reasons:

» Time cost: We empirically find that averaging dozens of inference
runs is necessary to produce an accurate latency measurement,
which inevitably brings up numerous time cost. The NAS pro-
cess is sequentially serialized as a loop of sampling, training,
deployment, and inference. That is, the inference latency data is
expected to reversely supervise the decision of the search strategy.
Thus, most of the time cost of the whole pipeline of NAS will be
wasted on this.

Energy cost: The deep learning server has a power level of kilo-
watt, and a lot of energy will be wasted while waiting for the
delay evaluation. In general, inference latency is very useful for
the architecture search, but it also brings up a huge energy
expense and an environmental and social burden.

In light of this, the novel ProxylessNAS (Cai, Zhu, & Han, 2019)
proposes the layer-wise latency predictor, which builds up a look-up
table to estimate the latency for the resource-constrained NAS. But in
our view, we believe that the latency of a deep CNN model should not
be calculated with simple hierarchical addition, especially for complex
and heterogeneous network structures, which are extremely common
out of NAS. It assumes sequential processing of operations that may
not represent the model architecture and hardware characteristics that
affect the end-to-end latency, e.g., whether operations can be computed
in parallel on the target hardware. Consequently, we propose an offline
end-to-end latency prediction framework to enable NAS. To demon-
strate this, we experiment with various machine learning and deep
learning regression models on it based on the dataset we establish.

In overall, our contribution can be specified as:

To reduce the energy consumption of the widely used NAS process
in industry and research, we first propose the end-to-end latency
prediction framework.

We carry out the novel encoding methods on MobileNetV3-like
search space and sample the latency dataset.

We comprehensively conduct the regression experiments with
several machine learning and deep learning models, including
SVR, LR, GBDT and LSTM, and so on. Eventually, our best model
achieves fantastic results, with MSE = 0.9349, MAE = 0.5249,
R? = 0.9842 and corrcoef = 0.9925. Besides, our framework is of
great scalability and can be applied in all the MobileNetV3-based
models.

Taking several classic multi-objective NAS as the baseline, we an-
alytically find that, for only one deployment by NAS, for example,
the NEMO (Kim, Reddy, Yun, & Seo, 2017), it will save 1588
kWh-PUE energy, 1515 pounds CO2 emissions, and $3176
cloud compute cost of AWS.

Sustainable Cities and Society 67 (2021) 102747

2. Related work

Energy consumption and CO2 emission of deep learning. The ever-
increasing deep learning models have gained notable progress in ac-
curacy across various artificial intelligence tasks, e.g. computer vision,
NLP (Cao, Cao, Guo, Huang, & Wen, 2020; Devlin, Chang, Lee, &
Toutanova, 2018; Peters et al., 2018; So, Le, & Liang, 2019), and
some other tasks. However, the improvement of precision highly relies
on extremely large computational resources, which represents the
inevitable tremendous energy consumption and CO2 emission. The
energy consumption of the intelligent systems and their environmental
problems have been widely concerned by academic circles. Zhou,
Fang, Xu, Zhang, and Ji (2019) employ the LSTM to predict the
energy consumption of the air conditioning systems. Meanwhile, the
empowerment of data-driven machine learning and deep learning
approaches have brought new research directions to the electricity,
building, and energy industries (Seyedzadeh, Pour Rahimian, Rastogi,
& Glesk, 2019). It also lays great emphasis on the data science applied
to environmental problems (Liu, Wang, Tang, & Tang, 2019).

Model compression and energy saving. To deploy deep learning appli-
cations in low computing power devices to reduce energy consump-
tion, some compact architectures are proposed by manual-designed,
e.g. SqueezeNet (Iandola et al., 2017), MobileNet (Howard et al.,
2019, 2017; Sandler et al., 2018), GhostNet (Han et al., 2020), Shuf-
fleNet (Zhang et al., 2018), Xception (Chollet, 2017). But manually
designing more efficient architectures relies heavily on human experts
experience, let alone design the network under resource-constrained,
e.g., the latency limit and energy-consumption. Different from propos-
ing the low-cost models by designing, some model compression ap-
proaches, e.g. network pruning (Han et al., 2015; He et al., 2017; Li
et al., 2017; Lin et al., 2017; Liu et al., 2017), quantization (Cour-
bariaux et al., 2015, 2016; Li & Liu, 2016; Rastegari et al., 2016; Wang,
Cao, Guo, Huang & Wen, 2020; Wang et al., 2020; Zhou et al., 2016)
knowledge distillation (Hinton et al., 2015), are widely used to achieve
compact models.

Neural architecture search. The promising progress of neural architec-
ture search was first reported by Zoph and Le (2017) and Zoph et al.
(2018), which is proposed on CIFAR-10 and Penn Treebank dataset
that stand for the benchmark task of image classification (CIFAR-10,
ImageNet) and NLP tasks, respectively. But on these tasks, a mass of
computational resource (20,000 GPU-days for the work of Zoph & Le,
2017 and 2000 of Zoph et al., 2018) is required. So some subsequent
literature tries to promote the efficiency of the search procedure, for
example, ENAS (Pham, Guan, Zoph, Le, & Dean, 2018) proposed in
the continuity of previous work (Zoph & Le, 2017; Zoph et al., 2018).
In the early days of NAS research, such huge computational overhead
(electricity cost, time cost) was beyond the reach of ordinary research
institutes and commercial organizations, which inevitably results in
numerous CO2 emissions.

Multi-objective neural architecture search. The above search methods do
not comprehensively consider the platform constraints in the search
process. Our work is most motivated by the DPP-Net (Dong et al.,
2018), MONAS (Hsu et al., 2018), MnasNet (Tan et al., 2019), and
Pareto-NASH (Elsken et al., 2018), which optimize the multiple objec-
tives, such as both the number of parameters and precision on CIFAR-10
datasets. The search procedure of MnasNet is time-consuming. MnasNet
works in discrete space, in which Reinforcement learning is used to
train an RNN controller. MONAS (Hsu et al., 2018) and DPP-Net (Dong
et al., 2018) are capable of optimizing multi-objective, precision, and
other objectives evaluated by the target platforms. But the deploy-
ment of real-time data is not feasible to achieve and the time cost
spontaneously increase.



L. Lu and B. Lyu

Cin

‘

Pointwise conv, Relu6

| C;n*ratio 'e €{3,4,6} |
e
Depthwise conv, ‘ ks€ (3, 5, 7} |
Relu6 | ----mmmmo
Cm*ratlo

FC-Relu

Pointwise conv,
linear

% ﬂ'llt - Cm

Bottleneck output

Fig. 1. An overview of MobileNetV3 bottleneck, where ks means kernel size and e
means expansion ratio, and both of the two parameters have three choices.

Performance prediction. Some performance prediction methods concen-
trate on predicting the learning curve of the training accelerating the
training (Bowen, Otkrist, Ramesh, & Nikhil, 2016; Domhan, Springen-
berg, & Hutter, 2015; Klein, Falkner, Springenberg, & Hutter, 2016).
But recently, the research has been shifted to the other direction,
exploring performance prediction on the basis of properties of the
architectures (Liu et al., 2018). Kipf et al. resort to GCN (Kipf & Welling,
2017) to describe the structure of neural architectures as the directed
graphs. Similarly, NPENAS (Wei, Niu, Tang, & Liang, 2020) employed
GNN-based to accomplish the precision prediction of models. Some
benchmark datasets have already been constructed for researchers to
study the performance prediction issues (Dong & Yang, 2020; Siems
et al., 2020; Ying et al., 2019), which will significantly improve the
search efficiency and save much more energy consumption.

Latency prediction. To achieve the easily gained feedback of efficiency,
recent works (Cai et al., 2019; Wu et al., 2019) leverage a layer-wise
predictor which derives the latency by summing latency measured for
each operation in the model individually. In our view, it is not reason-
able to assume the latency pattern to be sequential, for it does not take
account into the intertwining of the operations and the hardware char-
acteristics that directly affect the end-to-end latency, e.g., operations
can be executed in parallel on the numerous devices.

Our work. Motivated by these, we propose the end-to-end latency
prediction framework and creatively generate the dataset on target
devices with MobileNetV3-like search space. Thus, the latency pre-
diction problem is formulated as the supervising problem, and the
coding scheme of the architecture and the learning of the knowledge
representation are what we need to explore. We experiment several ma-
chine learning/deep learning models, including SVR, LR, BRR, LSTM,
and GBDT. And finally, our best model (LGLP) achieves a significant
prediction performance. Through our rough analysis, after applying our
LGLP model to NEMO, we can save 1515 pounds CO2 emissions and

Sustainable Cities and Society 67 (2021) 102747

Block i-1 Block i Block i+1
Layer O Layer 2 Layer 3
—_— R L — = SR S N 03
1
1
1
1
1
i
1
D S S s> 02
04
0o

Fig. 2. Depth search bottleneck.

more than 3176 dollars for one deployment, 101 pounds CO2, and 424
dollars for DPP-Net and at most $76896 for MnasNet.

3. Search space and network structure

Our search space is based on MobileNetV3 (MbV3), which combines
the operations of depthwise separable convolution, inverted residual
with linear bottleneck and Squeeze-and-Excite module. In this way,
it can improve efficiency profoundly by reducing computational cost
without sacrificing accuracy and increasing latency. Specifically, in our
experiments, each model has 10 blocks and each block has the max
depth of 4, and the min depth of 1 (As shown in Fig. 2). In other
words, the layers of our MbV3 model ranges from 10 to 40. The detailed
internal structure of bottleneck is shown in Fig. 1, and there are lots of
parameters that we can control, such as kernel size (ks), expansion ratio
(e), stride, Squeeze-and-Excite (se), shortcut connection and channels.
To be precise,

ks € {3,5,7}

e € {3,4,6}

stride € {1,2}

se € {True, False}
shortcut € {True, False}
channel,;, €

{24,32,48,96,136,192,232,272,304,384,576}

channel,,, € {24,32,48,96, 136, 192,232,272,304, 384,576}

4. Pipeline and dataset generation

4.1. Pipeline

The pipeline of generating dataset is built as Fig. 3 shows. The
model construction is accomplished with the input of original archi-
tecture parameters. As for deployment on NVIDIA GPU, the model is
converted and adapted for TensorRT engine. To reduce the randomness
of the inference performance, the sampling process is repeated and the
corresponding latencies are averaged.



L. Lu and B. Lyu

ks e d r e

Model U U]

construction Latency
il dataset
Repeat the Inference
—— and average the
W latencies
annnnn
TensorRT Deployment - :
model convert ( Model j : :
NVIDIA GPU

Fig. 3. Pipeline of the generating of the dataset.

4.2. Design of the data equilibrium

There is always a saying going like this “garbage in, garbage out”,
which means that if the meaningless and wrong data is utilized to
train our model, you will get the same meaningless and wrong output.
Models generated on imbalanced data will not perform well in the
real application. It is clear that the quality of the dataset is of great
importance when training our model. In the process of collecting the
latency dataset, we have taken notes of this problem and taken two
measures to avoid and alleviate the disproportion of latency label.
Taking into account the tremendous search space, which is because
there are lots of parameters in the MbV3 model architecture, and
also multiple choices for each parameter. Exactly, the search space
contains more than 3% 3% 4 410 4+ 5 = 10%, even though we
do not have thought of shortcut connection, strides and se. Therefore,
it is impractical to traverse the whole search space. Our preliminary
experiments show that the magnitude of the latency mainly depends
on the resolution of an input image and the depth of the model. Based
on the above findings, we take the following two measures.

» We traverse the entire depth and resolution search space and get
all the possible model architecture parameters. Then we pick a
certain number of samples at random. That is to say, the sample
in our dataset has uniform distribution, so does our latency label.
After getting the real latency label, we plot the distribution and
find that the number of samples is well-proportioned in per unit
time when the latency is lower, while the number of samples with
larger latency time is relatively few. And we hold the opinion that
this is due to we only control the depth and resolution. Which
leads to our next action.

According to the distribution of our dataset established in the first
step, we additionally sample those with larger latency time to
make up the imbalance. Exactly, we sample those model architec-
tures with larger depth and resolution with a higher probability.
Ultimately, we have a preliminary version of the latency dataset.
The distribution plot is as Fig. 4 shown.

4.3. Data cleaning

Our experimental observation and data analysis show that although
we have obtained reliable delay by averaging latency many times, there
are still some architectures that make delay data abnormal due to un-
known reasons, such as the running state of graphics card and hardware
accelerator state. To illustrate, we picked out some architectures with
large delay and tested them again. We found that there was a big
discrepancy between the delay and the original data. By extension,

Sustainable Cities and Society 67 (2021) 102747

3,000
2,500

2,000

13671458 2228 1409

1,500

number

1,000

500

o 4 N m oo m o N N X0 ¥ O O N @ ¥ O
o~ < o ~ [} o o~ < wn ~ o0 o o~ o wn o 0 o
i 6 = @ g o & 45 34 9 d 94948 88
P S N S T S TS S S 2
4 4 ¢ 8 8 ®m 9 n o4 N &8 © ¥ O © & 0o %
22 2 L2 B g 5 N ¥ 8N & S & @® o8 o8 o

= 4 o 22 2 2 & oogodgdog

latency /ms

Fig. 4. Final distribution of the dataset.

there were still a small number of delay data outliers in the whole
data. We employ the data cleaning method based on model detection
to remove 0.5% of the data.

5. Architecture encoding

In this section, we will describe how the model is encoded in detail,
and we will show four kinds of encoding scheme utilized in our LGLP
model.

5.1. Encoding scheme A

It is clear that the latency of a model has something with kernel
size, expansion ratio, and resolution of the input image. Therefore, the
first encoding scheme we have tried is to encode specific parameter
figures into a vector. As shown in Fig. 5, if the first layer has the kernel
size is 3, expansion is 4, and resolution is 512, then we express it with
a 3-dim vector [3, 4, 5.12]. Because the resolution is much greater
than kernel size and expansion, we make the resolution divisible by
100. As for those blocks that have layers less than four, we encode
the last (4 — blocky,,,) layers with zeros. In this case, for each model
architecture, we encode it with a 120-dim vector.

5.2. Encoding scheme B

Based on the encoding method used in once-for-all (Cai, Gan, Wang,
Zhang, & Han, 2020), we encode our model into a one-hot vector with
the dimension of 256, which can be separated into three parts in the
whole. In our search space, both the kernel size and expansion have
three choices.

ks € {3,5,7},e € {3,4,6}

Namely, if the kernel size is 5 in the first layer of the MbV3 model, then
we encode it with a three-dimensional vector [0, 1, 0]. However, if the
block has a layer of 3, that is to say, the fourth layer does not participate
in the process of building the model, and we signify the vector with [0,
0, 0]. The encoding of expansion is just like the kernel size. As for the
resolution, in our experiments, it can be chosen from 160, 320, 512,
768, 1024 and we map it into an eight-dimensional one-hot vector by
dividing by 146 and choosing the aliquot part.

5.3. Encoding scheme C

Considering the kernel size and expansion in the same layer have
specific internal connections, and should not be split into two parts
just like the encoding scheme B. Hence, we encode the kernel size and
expansion of one layer together with a 6-dim vector rather than encode
all the kernel vectors together with all the expansion vectors. Similarly,
we populate layers that are not involved in model building with zeros.
Besides, we encoded the resolution of the input image into an eight-dim
one hot vectors by dividing by 146 and select the aliquot part. In this
case, one model can be expressed by 248-dim one-hot vectors.



L. Lu and B. Lyu
5.4. Encoding scheme D

The latency time is not only related to kernel size, expansion and
resolution but also to the number of channels, stride, squeeze-and-
excite connection, and shortcut connection, which are the factors we
do not take into account in the first three encoding scheme. In this
encoding design, we take an overall consideration between the advan-
tages and disadvantages of B, C encoding schemes. All the architecture
hyperparameters of one layer are signified by a 37-dim one-hot vector,
and then all the vectors are concatenated into a vector with the dimen-
sion of 37 x 40 = 1480. Identically, we deal with the layers uninvolved
in the final model by padding with zero.

6. Model

In this section, we will introduce some background information
about some prevailing regression models in our experiments at first.
Then, something about long short-term memory networks and how we
creatively employ them to deal with our problem will be stated. Lastly,
we will present our final LGLP model based on LightGBM and LSTM.

6.1. Machine learning model

In recent years, deep learning has received a lot of attention and
favor. And it has made great achievements in various fields, such as nat-
ural language processing, image classification (Wang, Cao, Guo, Huang
& Wen, 2020), and image segmentation, and so on. In spite of the
popularity of the deep learning model, the traditional machine learning
algorithms are still very competitive when it comes to their strong
interpretability and time-saving characteristic. In our experiments, we
also explore several classical and prevailing regression algorithms,
such as Support Vector Regression, Linear Regression, Bayesian Ridge
Regression, and Elastic-Net Regression. Moreover, we experiment with
the popular and powerful gradient boosting decision tree, i.e. Gradient
Boosting Decision Tree (GBDT), and its improved version LightGBM,
which we will introduce in detail in the following essay.

6.1.1. Support Vector Regression

Support Vector Regression (SVR) is an application of Support Vector
Machine on the problem of regression. However, different from Support
Vector Machine where we need to find out a hyperplane having the
largest gap from the support vector, in SVR we define a parameter e,
and all the data in the range of 2¢ has a residual error of zero. And
for those out of the range of 2, their residual error is the distances to
the boundary of the hyperplane. Then, we minimize the sum of all the
residual error. In other words, SVR needs to define a hyperplane that
makes the farthest point has the smallest distance to the hyperplane.
Namely:

N
R
rzzt(iw w+C;§n) (@]
st |wlz, +b—y,| <e+¢, 2)
forall n,&, >0 3)

6.1.2. Linear Regression

Linear Regression is a commonly used statistical analysis method,
which resorts to the least square function called the linear regression
equation to model the relationship between one or more independent
variables and dependent variables. The most essential application for
linear regression is to predict the label of new data by means of the
model trained from the data that has been observed. And it has been
thoroughly studied and get a widespread application in plenty of fields.

Sustainable Cities and Society 67 (2021) 102747

6.1.3. Bayesian Ridge Regression

Bayesian linear regression is a linear regression model solved by
the Bayesian inference method in statistics. Comparing with the tra-
ditional linear regression model, Bayes linear regression regards the
parameters of the linear model as random variables, and figures out
the posterior probability of model parameters by their prior probability.
Bayes Ridge Regression joins the second-order loss of weight coefficient
to deal with the problem of overfitting, which is one of the simplest
implementations of using Bayesian inference in statistical methods.

6.1.4. Elastic-Net
Elastic-Net is a linear regression model utilizing both the first-order
and the second-order loss as regular terms to avoid and alleviate the
problem of overfitting. This combination allows for learning a sparse
model where few of the weights are non-zero like Lasso, while still
maintaining the regularization properties of Ridge, which makes the
model capable of learning better when there are multiple features that
are correlated with one another.
a(l-p)

2
L i}

. 1 2
min s—— || Xw = yI13 + ap ull, +
w nwmples

Similar to Linear Regression, we minimize the total distances of all
samples. « is a constant that multiplies the penalty term and p is the
mixing parameter of Elastic-Net.

6.1.5. Gradient Boosting Decision Tree

Gradient Boosting Decision Tree (Friedman, 2001) realizes the pro-
cess of learning with combining basic models (Decision Tree) linearly
and forward propagation algorithm, i.e. it establishes a new model to
fit the residual error of the former model, and then optimizes the new
model. After iterating lots of times, GBDT ensembles some of the weak
models to gain a powerful and excellent model with diverse strategies.
Recently, it is widely used in competitions to got better performance,
further. The algorithm is represented in Algorithm 1.

Algorithm 1: Gradient Boosting Decision Tree Algorithm

Initialize f(x) = argmin, Zﬁl L(y;,y). form=1—- M do

fori=1,2,—- N do
o Lo )|

im = of ()

end

Fit a regression tree to the targets r;, giving terminal regions

R,.i=12,-J, for j=1,2,-J, do

J
Vim = argmin 3" Ly, frmi (X) +7)

14 X;€R;y

S=Fm-1

end
‘,m

Update f,,(x) = f,_1(X) + X 7, I(x € R},).
j=1

end
output f = f,(x).

6.1.6. LightGBM

LightGBM (Light Gradient Boosting Machine) (Ke et al., 2017) is a
gradient framework that utilizes tree based on learning algorithms. It is
designed by optimizing the problem existing in the traditional Gradient
Boosting Decision Tree (GBDT) and Extreme Gradient Boosting (XG-
Boost) model and performs well with the merits of faster training and
higher efficiency, lower memory usage, better accuracy, and support
of parallel and GPU learning, which makes it feasible for LightGBM to
deal with large-scale data. In our experiments, the encoding vector of
the model is fed into the LightGBM model to regress the latency.



L. Lu and B. Lyu

Sustainable Cities and Society 67 (2021) 102747

model configs {ks:[3,5,5,7, 3,57, 5],e:[3,6,4,4,3,4,6,6],d:[4,3], r:[512]}

Block n

resolution

channel

stride

160|320‘512‘768|1024H 24‘32|4B‘96‘136‘192‘232‘272‘304|384‘576‘ ‘ 1 ‘ 2 ‘

51.2 0 0 o
|

== Block n-———— ——— | Block n+1l-———-
S 7 N )
——————————— Block n=- == === —————

————— Block ntl-————,

Fig. 5. A detailed explanation of our encoding. We take two blocks for example to illustrate our encoding scheme. Mb6 5*5 means bottleneck with a kernel size of 5*5 and an
expansion rate of 6. We use the same color to represent the same bottleneck or parameters. In encoding A, we encode the specific value of parameters directly, while the last
three are one-hot encoding. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

MSE Loss
X Ground truth
A
J 1
1X1 m
FC T I 1 : :
i HE N
Hidden ] [ ] | ] I 7] [ ] [ ] [ ] 71

layer

};;dede"l { [ I [ : N I

LSTM
Input I

feature

Fig. 6. The proposed regression model based on LSTM.

6.2. Deep learning models

6.2.1. Long Short-Term Memory network

Long Short-Term Memory network, (LSTM) (Hochreiter & Schmid-
huber, 1997) is a special kind of Recurrent Neutral Network, and it is
made up of plenty of cells having a peculiar internal structure. Compar-
ing with the common recurrent unit, LSTM is capable of encapsulating
the notion of forgetting part of its previously-stored memory, as well
as adding part of new information, which makes it possible for LSTM
to deal with time series based input problem. The MobileNetV3 is a
typical representative of the seq2seq model, and the input and output
of a specific block are affected by the former block’s output. That is to
say, predicting the latency time of one MobileNetV3 model from the
parameters of all blocks can be viewed as a sequence input problem,

which motivates us to have a try on the model LSTM. In our experiment,
LSTM is employed to extract the mixed feature, then the output of LSTM
is thrown into a regression model. Fig. 6 shows the whole topology
structure of the LSTM-based regression model. The core formulas of
the propagation of the LSTM are as Egs. (4)~(9) shown.

fi=oWslh_y.x;]+by) @
in; = G(VVin[hi—l’xi] + bm) ©
g = tanh(Wi[h;_y, x;]1 + by) ©



L. Lu and B. Lyu

Ouli = O-(I/Vaut[hi—l ’ xi] + bout) (7)
G =fikc +ij*g ®
h; = o; * tanh(c;) ©

where W, b denotes the weights and bias, respectively. in;, f;, out;
denote input gate, forget gate, and output gate at time step i, respec-
tively. The g; and ¢; are the cell state and final memory cell state.
For each time-step i, h,_; and x; are the hidden state and the input
at corresponding time step.

Specific to our problem of predicting the latency time, it is a
regression problem. Innovatively, we propose a new connection mode,
which is shown in Fig. 6. Instead of feeding the hidden state of the last
cell into the regression layer, we add all the hidden vectors together
and feed the sum into the regression layer. The final experiment results
show that this connection mode outperforms than only using the last
hidden state, or using all the hidden state just by concatenating them
ordinarily.

6.3. Our LGLP model

Our LGLP model is based on LSTM and LightGBM, and we innova-
tively merge the merits of these two models. In our LGLP model, LSTM
is regarded as a feature extractor because of its formidable ability to
extract features from sequence input, and instead of using the fully con-
nected layer as the classifier, we regress the latency time by means of
LightGBM. As far as we are concerned, LightGBM, an machine learning
model, is not compatible well with Pytorch because it does not support
gradient back-propagation. Therefore, the two basic models are trained
respectively. To be precise, we train LSTM with the original dataset
we established initially. After LSTM was totally trained, we saved all
the model parameters. Then, we got the extracted features (the input
of LightGBM) by loading the trained LSTM model and inputting the
original dataset once again. In this way, we can change our primary
dataset into a new virtual dataset, which incorporates the relationships
of all features. Final experiment results show that LGLP outperforms
the basic models greatly. Fig. 7 shows the whole topology structure of
LGLP model.

7. Experiments

Based on the proposed dataset, we carry out contrast experiments
among machine learning models, deep learning models, and our LGLP.
In this section, we will introduce our experiment settings about our
hardware and relevant parameters firstly. Next, the experiment results
will be displayed.

7.1. Experiment settings

We resort to the LSTM as the initial part of our LGLP model, and the
LSTM has three layers and binary directions with the hidden size = 64.
When training LSTM, we use the popular Adam as our optimizer with
learning rate = 0.001 and weight decay = 3¢~ and the loss function is
standard MSE loss. After training for 100 epochs with the batch size =
128, we fetch the last hidden state of LSTM output. Next, we begin to
train LightGBM with boosting_type = gbdt, num_leaves = 500, learning
rate = 0.01 and n_estimators = 3000. Besides, because of the power
learning ability of LightGBM, we continue training until the MSE loss
of valid dataset does not improve for 15 rounds to prevent overfitting.
The entire experiments are implemented based on Pytorch = 1.5.0,
TensorRT = 7.2.1.6 on Ubuntu 16.04, with the devices of Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10 GHz and four NVIDIA GeForce GTX
1080Ti GPUs.

Sustainable Cities and Society 67 (2021) 102747

Table 1

Comparison of the prediction results of various models in different metrics.
Model MSE MAE RrR? corrcoef
Support Vector Regression 4.2377 1.1651 0.9181 0.9657
Linear Regression 5.0040 1.6305 0.9092 0.9573
Bayesian Ridge Regression 4.9665 1.6239 0.9084 0.9576
Elastic-Net 22,5077 4.0769  -0.2444  0.9237
GBDT 4.4234 1.5122 0.9165 0.9629
LightGBM 0.9946 0.5413  0.9830 0.9922
LSTM, layers = 1 2.0209 1.0719  0.9658 0.9830
LSTM, layers = 1, bidirectional 1.8187 0.9712 0.9693 0.9849
LSTM, layers = 3, bidirectional = 1.2922 0.7861 0.9782 0.9892
LGLP 0.9349 0.5249  0.9842 0.9925

7.2. Evaluation metrics

* Mean absolute error (MAE) is the mean absolute error of all
samples, and it can clearly reflect the error between predicted
values and true labels. It can be calculated by the following
equation, where y,, f; are labels and predictions, respectively (The
same goes for other equations).

m
1
MAE:EZIfi_yil
i=1

Mean squared error (MSE) measures the mean square distance
between the observed values and true labels, which is used in
regression problem to evaluate model performance. It is figured
out by the following equation.

1 m
MSE = -~ ;(fi—y‘.)z

Coefficient of determination, also known as R?, reflects the degree
to which the independent variable explains the change of the
dependent variable. Apparently, the closer R? is to 1, the better

the model fits.
R2 —1- Zﬁ](f: - yi)2
Z:’;l(y[ _)_7)2

m
1
where y = — ;
y " ;)’,

Correlation coefficient (corrcoef) is used to measure the correla-
tion of two variables, which ranges from —1 to 1, and the closer
corrcoef is to 1 or —1, the stronger the correlation.

Z:n:l(xi - =9

corrcoef =
VI G = 2B (- 2
R R
where X = EZx,, y= EZyi
i=1 i=1
7.3. Results

Table 1 reports the results of all the models based on the dataset of
GPU latency. We show the mean squared error (MSE), mean absolute
error (MAE), coefficient of determination (R%) and correlation coeffi-
cient (corrcoef). Besides experimenting on the machine learning models
we discussed above, we also test multiple layers and bidirectional
LSTM, which have an important impact on the results. From the table,
we can clearly see that our LGLP outperforms other models significantly
with the MAE only 0.5249, which is a half of LSTM, one third of GBDT
and even one-eighth of Elastic-Net. And the scatter diagram between
labels and predictions is shown in Fig. 8.



L. Lu and B. Lyu

LSTM

)

m-

=1
]'c

<

-+

Sustainable Cities and Society 67 (2021) 102747

1

i Removed when
B ) < Label | training LightGBM
1
|
1

IR

LightGBM

~H

I

8 | /
=INEN |y
RS

-/

Fig. 7. An overview of LGLP. The part in the dashed frame is the latency predictor we deployed initially, which will be removed when training LightGBM.

Table 2

Estimated CO2 emissions and cloud compute cost, which can be saved by our LGLP. Frequency means the times needed for sampling a model
satisfying the target constraint, and “—” means that there is no officially published power data. The cloud compute cost is based on the unit
cost of U.S standard, preemptible ($1.46/h-$2.48/h), and on-demand($4.50/h-$8/h) for min and max cost. Notably, the cloud cost of NVIDIA
1080Ti and Tesla M40 is calculated by converting them into TPUv2 required according to their computational capabilities.

Model Hardware Power Frequency Time saved kWh-PUE CO2e Cloud cost
MnasNet 64 TPUV2 - 8000 267 h - - $23073-$76896
DPP-Net 4 GTX 1080Ti 1 Kw 2000 67 h 105 101 $424
NEMO 60 T M40 15 Kw 2000 67 h 1588 1515 $3176
g35 Specifically, we figure out the deployment and inference time,
E which can be saved by our LGLP model directly about some popular
-g30 models, such as, DPP-Net, NEMO, and MnasNet. We experimentally
- 25 found that, e.g., a 30 layers MBV3 model, transferring Pytorch model to
onnx then to TensorRT, costs 120 s or so (based on our hardware, which
20 has been stated in experiment setting section). In our estimation, we
is assume that getting an architecture satisfying latency constraint needs
2000 times, which is an underestimate because the DPP-Net samples
10 8000 times to get the target model as reported in the primitive paper.
The detailed results are listed in Table 2.
5
0 9. Conclusion
0 5 10 15 20 25 30 35

prediction / ms

Fig. 8. Prediction result. The horizontal axis is the predicted value, and the vertical
axis is the label.

8. Energy saving and benefits

Usually, the neural architecture search samples architectures ran-
domly by means of evolutionary algorithm or reinforcement learning
algorithm, and this needs lots of trying. Besides, the host model will
have to wait for the detailed latency time to help itself execute the
next decision. As is known, the host model always requires high-
power computing equipment. When waiting for the feedback from
deployed equipment, there will be lots of energy wasted meaninglessly.
To quantify the computational energy and environmental cost when
training Neural Architecture Search and deploying for getting inference
time. Similar to the method in Strubell et al. (2019), we calculate
the electricity consumption in training according to the hardware and
training time reported in the original paper. Then we multiply the
coefficient of CO2 generated (per kilowatt-hour) published by the
Environment Protection Agency in 2018 (Emissions, 2018), namely,

CO,e = 0.954p

We proposed LGLP, the first end-to-end latency prediction frame-
work that can precisely and fast predict the latency of one model. Based
on the dataset we established and the encoding scheme we designed,
our LGLP model can achieve excellent performance, and the MSE, MAE,
R? and corrcoef between ground-truth and predicted latency on the
test set are 0.9349, 0.5249, 0.9842 and 0.9925, respectively, which
is precise enough to abandon deploying on the platform for getting
latency. Specifically, according to our rough estimation, after applying
our LGLP model to NEMO, we can save 1515 pounds CO2 emissions and
more than 3176 dollars for one deployment, 101 pounds CO2, and 424
dollars for DPP-Net and at most $76896 for MnasNet. In this case, our
model will save amounts of CO2 emissions and electricity consumption
when applying NAS and will bring incalculable benefits to society and
the environment.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



L. Lu and B. Lyu

References

Bowen, B., Otkrist, G., Ramesh, R., & Nikhil, N. (2016). Accelerating neural architecture
search using performance prediction.

Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2020). Once for all: Train one network
and specialize it for efficient deployment. In International conference on learning
representations.

Cai, H., Zhu, L., & Han, S. (2019). Proxylessnas: Direct neural architecture search on
target task and hardware. In International conference on learning representations.
Cao, Y., Cao, Y., Guo, Z., Huang, T., & Wen, S. (2020). Global exponential synchroniza-
tion of delayed memristive neural networks with reaction-diffusion terms. Neural

Networks, 123, 70-81.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
CVPR.

Courbariaux, M., Bengio, Y., & David, J.-P. (2015). Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information
processing systems 28 (pp. 3123-3131).

Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized
neural networks: Training deep neural networks with weights and activations
constrained to 1 or —1. arXiv: Learning.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. N. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics:
Human language technologies, volume 1 (long and short papers) (pp. 4171-4186).

Dombhan, T., Springenberg, T. J., & Hutter, F. (2015). Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning curves.
In IJCAI (pp. 3460-3468).

Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., & Sun, M. (2018). Dpp-net:
Device-aware progressive search for Pareto-optimal neural architecture. In ECCV.

Dong, X., & Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural
architecture search.

Elsken, T., Metzen, H. J., & Hutter, F. (2018). Multi-objective architecture search for
cnns. arXiv: Machine Learning.

Emissions, E. (2018). Generation resource integrated database (egrid). Washington, DC:
US Environmental Protection Agency.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 1189-1232.

Han, S., Pool, J., Tran, J., & Dally, J. W. (2015). Learning both weights and
connections for efficient neural networks. In neural information processing systems
(pp. 1135-1143).

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). Ghostnet: More features
from cheap operations. In 2020 IEEE/CVF conference on computer vision and pattern
recognition (pp. 1580-1589).

He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very deep neural
networks. In ICCV (pp. 1398-1406).

Hinton, E. G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. CoRR.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735-1780.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al. (2019). Searching
for mobilenetv3. In Proceedings of the IEEE international conference on computer vision
(pp. 1314-1324).

Howard, G. A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et
al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv: Computer Vision and Pattern Recognition.

Hsu, C.-H., Chang, S.-H., Juan, D.-C., Pan, J.-Y., Chen, Y.-T., Wei, W., et al. (2018).
Monas: Multi-objective neural architecture search using reinforcement learning.
arXiv: Learning.

Iandola, F., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2017).
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model
size. arXiv: Computer Vision and Pattern Recognition.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm: A
highly efficient gradient boosting decision tree. In Advances in neural information
processing systems (pp. 3146-3154).

Kim, Y.-H., Reddy, B., Yun, S., & Seo, C. (2017). Nemo: Neuro-evolution with
multiobjective optimization of deep neural network for speed and accuracy. In
ICML 2017 AutoML workshop.

Kipf, N. T., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International conference on learning representations.

Klein, A., Falkner, S., Springenberg, J. T., & Hutter, F. (2016). Learning curve prediction
with Bayesian neural networks.

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, P. H. (2017). Pruning filters for
efficient convnets. In International conference on learning representations.

Li, F., & Liu, B. (2016). Ternary weight networks. CoRR.

Sustainable Cities and Society 67 (2021) 102747

Lin, J., Rao, Y., Lu, J., & Zhou, J. (2017). Runtime neural pruning. In Advances in
neural information processing systems 30 (pp. 2178-2188).

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient
convolutional networks through network slimming. In ICCV (pp. 2755-2763).
Liu, Z., Wang, F., Tang, Z., & Tang, J. (2019). Predictions and driving factors of
production-based CO, emissions in Beijing, China. Sustainable Cities and Society,

53, Article 101909.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., et al. (2018). Progressive
neural architecture search. In Proceedings of the European conference on computer
vision (pp. 19-34).

Owyer, E., Pan, 1., Charlesworth, R., Butler, S., & Shah, N. (2020). Integration of
an energy management tool and digital twin for coordination and control of
multi-vector smart energy systems. Sustainable Cities and Society, 62, Article 102412.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., et al. (2018).
Deep contextualized word representations. In Proceedings of the 2018 conference
of the North American chapter of the association for computational linguistics: Human
language technologies, volume 1 (long papers): Vol. 1, (pp. 2227-2237).

Pham, H., Guan, Y. M., Zoph, B., Le, V. Q., & Dean, J. (2018). Efficient neural
architecture search via parameter sharing. In ICML (pp. 4092-4101).

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4510-4520).

Seyedzadeh, S., Pour Rahimian, F., Rastogi, P., & Glesk, I. (2019). Tuning machine
learning models for prediction of building energy loads. Sustainable Cities and
Society, 47.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., & Hutter, F. (2020). Nas-bench-
301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777.

So, D. R., Le, Q. V., & Liang, C. (2019). The evolved transformer. In International
conference on machine learning (pp. 5877-5886).

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th annual meeting of the association
for computational linguistics (pp. 3645-3650).

Su, Y. (2020). Smart energy for smart built environment: A review for combined
objectives of affordable sustainable green. Sustainable Cities and Society, 53, Article
101954.

Tan, M., Chen, B., Pang, R., Vasudevan, V. K., Sandler, M., Howard, A., et al. (2019).
Mnasnet:platform-aware neural architecture search for mobile. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 2820-2828).

Wang, Y., Cao, Y., Guo, Z., Huang, T., & Wen, S. (2020). Event-based sliding-mode
synchronization of delayed memristive neural networks via continuous/periodic
sampling algorithm. Applied Mathematics and Computation, 383, Article 125379.

Wang, S., Cao, Y., Guo, Z., Yan, Z., Wen, S., & Huang, T. (2020). Periodic event-
triggered synchronization of multiple memristive neural networks with switching
topologies and parameter mismatch. IEEE Transactions on Cybernetics.

Wei, C., Niu, C., Tang, Y., & Liang, J. (2020). Npenas: Neural predictor guided evolution
for neural architecture search.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., et al. (2019). Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
10734-10742).

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., & Hutter, F. (2019).
Nas-bench-101: Towards reproducible neural architecture search. In International
conference on machine learning (pp. 7105-7114).

Zahmatkesh, H., & Al-Turjman, F. (2020). Fog computing for sustainable smart cities
in the IoT era: Caching techniques and enabling technologies - an overview.
Sustainable Cities and Society, 59, Article 102139.

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Computer vision and pattern
recognition.

Zhou, C., Fang, Z., Xu, X., Zhang, X., & Ji, Y. (2019). Using long short-term memory
networks to predict energy consumption of air-conditioning systems. Sustainable
Cities and Society, 55, Article 102000.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv: Neural
and Evolutionary Computing.

Zhu, J., Shen, Y., Song, Z., Zhou, D., Zhang, Z., & Kusiak, A. (2019). Data-driven
building load profiling and energy management. Sustainable Cities and Society, 49,
Article 101587.

Zoph, B., & Le, V. Q. (2017). Neural architecture search with reinforcement learning.
In International conference on learning representations.

Zoph, B., Vasudevan, V., Shlens, J., & Le, V. Q. (2018). Learning transferable
architectures for scalable image recognition. In Computer vision and pattern
recognition.


http://refhub.elsevier.com/S2210-6707(21)00041-X/sb1
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb1
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb1
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb4
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb4
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb4
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb4
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb4
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb7
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb7
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb7
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb7
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb7
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb11
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb11
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb11
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb12
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb12
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb12
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb13
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb13
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb13
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb14
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb14
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb14
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb15
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb15
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb15
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb15
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb15
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb18
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb18
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb18
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb19
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb19
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb19
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb21
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb21
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb21
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb21
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb21
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb22
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb22
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb22
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb22
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb22
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb23
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb23
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb23
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb23
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb23
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb24
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb24
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb24
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb24
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb24
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb27
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb27
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb27
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb29
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb32
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb32
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb32
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb32
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb32
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb34
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb34
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb34
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb34
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb34
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb39
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb39
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb39
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb39
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb39
http://arxiv.org/abs/2008.09777
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb43
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb43
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb43
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb43
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb43
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb45
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb45
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb45
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb45
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb45
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb46
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb46
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb46
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb46
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb46
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb47
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb47
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb47
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb50
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb50
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb50
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb50
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb50
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb51
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb51
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb51
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb51
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb51
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb52
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb52
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb52
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb52
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb52
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb53
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb53
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb53
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb53
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb53
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb54
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb54
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb54
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb54
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb54
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb56
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb56
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb56
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb56
http://refhub.elsevier.com/S2210-6707(21)00041-X/sb56

	Reducing energy consumption of Neural Architecture Search: An inference latency prediction framework
	Introduction
	Related work
	Search space and network structure
	Pipeline and dataset generation
	Pipeline
	Design of the data equilibrium
	Data cleaning

	Architecture encoding
	Encoding scheme A
	Encoding scheme B
	Encoding scheme C
	Encoding scheme D

	Model
	Machine learning model
	Support Vector Regression
	Linear Regression
	Bayesian Ridge Regression
	Elastic-Net
	Gradient Boosting Decision Tree
	LightGBM

	Deep learning models
	Long Short-Term Memory network

	Our LGLP model

	Experiments
	Experiment settings
	Evaluation metrics
	Results

	Energy saving and benefits
	Conclusion
	Declaration of competing interest
	References


